(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강제얼버기 1
에반데 이따낮잠자야겠다
-
지금 진학사에는 3칸 불합뜨는디 안되려나요.... 하... 영어가 빵꾸가 나버려서...
-
수학 단과 다닌곳에서 9평 응원문자 정병호쌤꺼 인스스에 올린거 베낀거 너무 짜쳐요...
-
이원준 강민철 김동욱 강윤구 션T 강민웅 이훈식 박선 이 중 들으려고 고민중인 분들 질문 주세요
-
가천대 지방교대 0
대학 추천 부탁드립니다 +가천대 가고싶긴함요..
-
실시간 3
아무도 없는 강남대로
-
고아름쌤 아름다운기출n제 동아시아사 구해요! 글내리기 전까진 못구한거니 많이 찔러주세요!
-
연고대 비인기과 비벼볼라면 평백 몇이상 나와야 해요? 1
연고대 철학과 사학과 이런곳 비벼볼라면 평백 최소한 몇이상 나와야함둥?
-
화작, 미적, 영어, 물리, 생명 한국사 89 78 3 77 63 3 생명 망해서 안될까요
-
아무 이유가 없는거죠 사람이 뭘 하기 위해 태어난게 아니라 태어났기 때문에 뭘...
-
반수 고민 6
반수한다면 성공할 수 있을까요 지금 성적으로는 어디까지 될까요
-
20수능부터 봤는데 점점 퇴화한다... 서성한 라인 공대다니면서 수능본 입장에서...
-
아침에일어나야함
-
어떻게 89가 1이 안뜰수 있지? 근데 칸타타님 글 보니 보수적으로 생각하면...
-
이제 어떻게 살아야할까 난 뭐해먹고 살까 나이는 찼는데 이룬건없고 결국 원하는건 못...
-
미적이 쉽긴 했어도 14, 22가 작수 킬러급이라 생각하는데 만표가 올수랑 비비네
-
낭만없는 정시러는 아무리 성적을 잘받아도 낭만이 없음뇨
-
미적 다 맞았고 공통 1개 틀려서 96인데 공통 다 맞고 미적1틀한 96점이랑...
-
화1 만백 98이상 기원 2일차
-
현역(23) 땐 교육청 두 번 제외 수학 전부 만점이었었는데 올핸 6, 9, 11...
-
반수 도전이 고민됩니다 16
내신따기 쉬운 일반고에서 고2까지 쭉 놀았어요.(수업시간 빼고 공부 안함) 내신...
-
화작 확통 영어 사문 정법 77 70 4 41 39 충남, 충북 갈 수 있을까요??
-
고2 물리1 생기부 주제탐구로 엔트로피 관련된 내용 해도 될까요? 1
물리1 주제 탐구 수행에서 교과서에 엔트로피의 개념이 자세하지 않아 이에 엔트로피의...
-
예비 고3이라 이제 26수능 국어 인강들으려 하는데 문학은 김상훈 쌤의 문학론이...
-
작수 국어 1등급이였는데… 킥킥
-
우리 이대남들 진짜 사랑함니뇨
-
제얘기임뇨 호애애애앵
-
최근에 본 영화 1
예전에 봣던거 또보기 인셉션 다크나이트 트릴로지 새로본거 살인마 잭의 집 위플래시...
-
일단 논술은 홍대 경희대 보고 기도중입니다
-
뭐로 입문하면 될까요 형님들
-
자야겟음뇨 2
빠빠이
-
고 1 국어 모의고사 문법 문제 어떻게 공부해야하나요 0
예비고1인데 국어 모의고사에 문법 문제가 나오는거 같던데 어떻게 공부해야하나요...
-
미안하고 고마웠다 10
맨날 발바닥 타령해서 미안했고.... 나같은 찐이랑 친하게 지내줘서 고마웠다....
-
사회계열 가고싶은데 가능할까요? 어디까지 가능할지 봐주시면 감사드리겠습니다…. 글이...
-
궁금합니다
-
호머식 해주면 안 되나 ㄹㅇ로 내 만점 돌려달라고
-
대성 션티 쌤 수업 듣고 싶은데 그냥 패스로 사는게 니을까요..? 수학...
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다