회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
경북대 가격 보고 와야겠다
-
알고리즘이 군대 영상으로 도배됐는데 그 옆에 교도소 영상이 하나 딱 떠있네...
-
우리은행 앞임
-
아니 10개 넘는 과 중에서 단 한 개 과가 제 성적으로 불합인데 어떻게 9개...
-
ㄱㄴㄱㄴ?
-
에잉 물렸다 0
이렇게된이상 소장각><
-
내일 많이 사주셈
-
강민철안듣고 김승리듣는 사람도 많음? 난 승리듣는데 강민철 안들어도 괜찮은건가
-
예비가 안나와서.. 궁금해요
-
시발…그냥 내 캬루룽 레어라도 돌려도
-
그지야 그지
-
미쿠가져가잉 6
왜안사징
-
이거 평생 뺏고뺏눈거임?
-
슈능귝어는 4
강평 아님
-
히힣 2
레어예뿌당
-
덕코가 복사가 된다고
-
이건 끝까지 안고 가야할듯
-
ㅂㅅㅈㅌㅅ 들어와라
-
의치한 인증 5
ㅎㅎ
-
강해린 다뺏김 2
ㅠㅠㅠㅜㅜㅜㅜ
-
걍 귀여워서.. ㅎ
-
ㅂㅇ 13
ㅇ
-
야이나쁜새끼들아 2
-
><
-
잘하면 물림
-
레어 막 지르기 1
캬캬
-
저이거 공군 하나만 두고 싶은데 누가 사주시먄 안되나요
-
인하대 공학 융합은 최초합 상태이고 숭실 전전은 아마 추합 될거 같은데 어디가 더...
-
제 레어를 제발 사가지 말아주세요
-
ㅇㅇ
-
캬루룽 6
><
-
엉덩이 딱대.
-
ㅇㄱㄹㅌ 1
그만해.
-
.
-
오늘이 기회의 시간
-
캬루룽>< 0
><
-
10만덕 돌려드립니다 ..
-
이거 파는거임 뭐해야되는가임 환불 안됨?
-
10덕에 올려야되네요
-
추합은 조기발표 없이 예정대로 되는건가요??
-
비싼건
-
인하대 공학융합학부 304명 중 1등인데 장학금이 아니더라고요.. 혹시 장학금...
-
피부 좋아지는법 0
피부에 아무것도 안바르기
-
그만 뺏어갓 0
애니프사단 덕코가 얼마나 많은거야
-
수1,2 미적 시간분배 몇시간씩 해야댐여?
고등학교내용 아닐걸여
직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요
복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?