아이디어성 경우의 수 문제 (10000덕)
모든 항이 {1,2,...,m}의 원소이고, 길이가 k인 모든 수열들의 집합을 생각하자. 각각의 수열에서 가장 작은 항을 뽑고, 그 값들을 더한 합을 구하여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 본계임
-
다른건 절제한다쳐도 야구 중독인데 ㄹㅇ 클났네 올해도 하필 기아가 내가 고3일때...
-
근데 지금과자가 개땡기는데 하아
-
근데 못참겠다
-
ㄹㅇ
-
이루 말할 수 없군..
-
@pota_to_ggang 포타토깡으로 읽으면 됨
-
전라도 광주 어찌고저찌고 씨*새*어찌고 저찌고 써있는걸 보며 글이 저급하다는 생각이...
-
전기세 내야하는데
-
자기 전 무물보 2
-
694로 경영 경제 응통 언홍영 정외 다 붙는데 심지어 어문계열들도. 유독 안되는...
-
진심으로 그 의견에 동의하는애들은 못봤는데 진짜 진심으로 그 의견이 맞다생각하고 동의하는경우가있을까
-
동기들이랑 다같이 놀다가 집주인 컴퓨터로 누가 과제한다고 켰는데 모 커뮤니티 사이트...
-
응애 0
또 졋어
-
헬스장 가는중 4
터벅터벅
-
일어나는 시간이 애매해수 맨날 두끼
-
맞팔9 4
-
늙어가면서 사람이 망가지고 변하는 경우가 많은거같음 쭈글쭈글해지는것도 싫음 롯데회장...
-
걍궁금
-
맞팔구 5
-
저랑 맞팔이신 분들 14
중에서만 맞팔 구함
-
꼬추털론
-
새벽의 맞팔구 2
그냥 심심해 맞팔구하는 김에 글 주제 추천 받아요
-
보일러 껐는데.
-
ㄹ 1
-
과는 둘 다 안문계열로 가정 뭐 고름?
-
음모론이 무서운 이유는, 정말 그럴듯한 거짓말과 사실 왜곡을 통해 사람들을 선동하고...
-
기차지나간당 1
부지런행
-
필기하는데 갑자기 필기가 틔어서 그린적없는 선들이 막 그려짐 아니면 그냥 선을...
-
치토스 검정색 먹을까 바나나킥먹을까 팝콘먹을까
-
Secret.
-
올해 연대 붙을 수 있는 합격선 점수로 보시나요
-
아오 7
이제부터 꼽히는 애들 다 차단이다.
-
자야겠당 4
-
이번주가 현강 4주차라 이제는 결정을 해야해요.. 주변애들 대부분이 조정식 현강을...
-
오
-
하...
-
너무긴장되고초조하며이복잡하고도오묘한괴로운기분
-
인생초기화 시급 0
다시살면 더 멋지게 살텐데 어째서. 다 망한거 억지로 잡고있는것이냐
-
삼반수 할말 4
삼반수 할말? 여자고 올해 중경외시 라인 나옴 현역 85 95 2 75 70 재수...
-
나이 12
Secret.
-
사랑이란 0
너가 늘 눈부시게 행복하길 원하는 마음이야 널 사랑해
-
사과주스 마싯다 0
애플주스!
-
장수하기싫음 3
무병단수하고 싶은데 유병장수 각이 서는 인셍.. 강제로 끊는 것밖에 답이 없을수도
-
ㄹㅇ? 그럼 내일 발표할려나 아님 의식 안 하는 척 하려고 금요일 발표?
-
우울할땐 처먹으면 풀릴지도
-
겨드랑이가 장발인.. 으흐흐
-
난 장발 좋은데 10
지금 울프컷정돈데 만족하는디 다들 장발 싫어하드라고 그래도 할래
-
Mbti. 4
Secret.
-
시발근데모든강의를들을수있는것도아니고 강사 선택폭이 넓은것도 절대아님 기껏해야 2명임...
기하러라 포기
아 몰라 이런건 1,0,-1 중에 하나랬음
-1?
풀수있는거맞아요??
나름 우수한 통통이입니다
좀 어렵
통통이인 게 문제군요
아 길이가 k구나
엠마이너스1Ck 곱하기 1 + ... +
적기가 귀찮음
아닌거 가튼데
아 중복도 되네
논술하면서 봤던거같은데 귀찮;;
으아ㅏㅏ
∑(i=1 to m) i * (m-i+1)^(k-1)
맞는것 같기도 한데 식이 완전 깔끔하게 정리돼요
Σ (i * (m-1)^(k-1)) for i
?
흑흑
어렵네
깔끔하게 기준이 뭔가요
깔끔하게라고 하면 애매하긴 한데;; 식이 정말 누가봐도 깔끔하긴 해서..
답 적어주시면 최대한 확인해볼께요
흠..
m=3,k=2일 떄 답이 14가 나와야돼요. 써주신 답은 10이 나와서,,
아 처음 접근을 찐빠냈네요
i는 1부터 m까지, i^k의 합?
캬
아니 맨처음에 진행양상을 파악할때 수열 내에서 최솟값의 위치를 고려 안하고 시작했네요....
원래 풀이임미다.
모든 m^k개의 수열에서 일단 1씩 더해진다. 그 중 1이 없는 (m-1)^k개에서는 최소항이 2 이상이므로 1씩 추가로 더해진다. 또, 그 중 2도 없는 (m-2)^k개에서는 최소항이 3 이상이므로 1씩 다시 추가로 더해지고,... 반복
1부터 m까지 (해당 최솟값을 갖는 수열의 갯수)×(최솟값)에서 소거꼴 찾았는데 원본이 더 간결하네용