회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
걍 쿠팡뛰어도 됨?
-
12명 뽑는과고 30명지원했어요 지금은 19명중에 10등인데 저보다 높은데 진학사엔...
-
ㅎㅎ 3
ㅣㅣ
-
정시 산출식 알려주세요...
-
잘자 4
ㅂㅂ
-
걍 자야겟다 4
하루정돈 굶지 뭐.
-
탈릅합니다.. 14
ㅂㅂ
-
자전 갈거 같은데 반수할거라 어차피 1년 뒤에 다 다른 과 갈텐데 있어도 굳이 가야되나 싶어서
-
메타 전환 1
할까요 야식추천
-
이거보고 카레이서 되기로 했다
-
난 동태가 더 좋아
-
걍 정수조건있으면 문제 풀기 싫어짐
-
건대vs경희 2
경희는 국캠이고 공과대학 아니고 생명과학대학임
-
님자지큼? 이거 재밌는줄 알았서요.. 저 좀 병신이라 그래요.. 앞으로 조심할게용
-
그래도 나는 거침없이 하이킥…
-
난 당당하게 살아가고 잇어 너네도 좀 당당하게 살아
-
ㅁㅌㅊ? 1
-
난 학벌이라도 높여야겠다
-
ㄴㅈㅈㅋ? 2
ㅇ
-
10초안에 와라 12
10 9 8.. 끝
-
그정도로 했으면 재능 없는 거 인정하고 그만둘 때가 됐다고 성적 떨어졌으면서 무슨...
-
학교인기투표 0
ㄱㄱ
-
서울대 진학사 1차 합불 여부 등록 다들 하셨나요? 3
금요일부터 하려고 했는데 점수공개 페이지에 들어가도 어떻게 등록하는지 알 수가...
-
이거 아는 사람 5
-
기분은 좋다 우하하
-
취한김에 진지한 이야기 10
엉덩이는 무슨맛일까... 마블링 풍부해서 맛있을거같지않음?
-
야식 먹자 10
한끼는 에바야..
-
점공 안들어오는 사람들은 5칸 이상이 많나요? 그 아래가 많나요? 외대 상경계열...
-
친구 없다면서 ㅇㅈ은 실친이 볼까봐 못하겠다고하네요~
-
일단 저는 방금 일어남
-
공통 풀면 비내리는데 확통은 자이스토리도 다 맞아버리는 나를 발견할수있음 자존감 상승.
-
나 피크민 닮음?
-
나도 2
실친이 볼까봐 쫄려서 사진은 못 올리겠는데
-
눈물날려그래 자꾸 나 왜이래…
-
아루 이쁜듯 2
근데 블아 어케하믄건지모르겟어서걍 안하고잇음
-
본인 최애곡 4
Ghvstclub-Misfit97 한동안 저것만 듣고 다녔었는데 뭔가 다크한 느낌이라 좋았음
-
퓨ㅠㅠ
-
"그녀석"이 업어서 그래.. 하아..
-
Ai ㅇㅈ 2
-
연대 펑크 0
연대 이과 빵 어디어디 난것같나요...???
-
재밋음
-
빽다방에서옛날커피를사서마실때 천원을내고설탕가득호떡을깨물때 계획표의모든계획에체크표가쳐질때(희귀함)
-
울고 있었다면 다시 만날 수 없는 세상이 멋지지 않았는가
-
제가 좋아하는 스타일들 모음
-
유빈 4
유빈아카이브 같은 자료방 더 없냐 추천 좀 해줘라
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요