전글 정답
계속 뻐기고 있으면 어차피 위상수학 이미 들으신 분이 와서 5000덕 가져갈 게 뻔하니까 걍 올릴게요
놀랍게도, 두 형태는 위상동형이 맞아요
위상동형의 직관적인 정의로는 이해가 힘들지만, ‘두 공간 사이에, 원함수와 역함수 각각이 연속인 일대일대응이 존재한다‘는 엄밀한 정의를 따른다면 알 수 있죠
좀 더 기하적으로 생각해 본다면, 저 팔찌의 형태는 정육면체에서 마주보고 있는 면을 정방향으로 이어붙인 공간과 같다고 생각할 수 있는데, 그렇다면 면을 360도 돌린 뒤 다시 붙인 공간도 결국 면이 정방향으로 이어 붙여진 상태니 같다고 생각할 수 있어요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
15학번 새내기 여러분 여러분들만을 위한 카페가 생겼습니다.언능오셔서...
-
제가 지금 예비 1번인데 오늘 9시까지 거든요ㅠㅠ 제발 빠져주세요 한양대 경제금융과...
전글 못 봣는데 정답글은 봣네
자르기로만 같아질수있는 두 형태가 위상동향이 될 수 있다는건가요..?
결론부터 말하면 맞아요
예를 들어, 세 부분으로 나눠져 있고 시계 방향으로 순서대로 빨강, 초록, 파랑이 칠해진 원 모양 끈을 생각해 본다면, 2차원 평면에서 이 끈을 자르지 않고는 시계 방향으로 빨강, 파랑, 초록이 칠해진 끈으로 바꿀 방법이 없어요
하지만 3차원에서는 당연히 뒤집어서 바꿀 수 있으니, 결국 위상동형의 개념이 물체가 있는 공간에 의존하는 상황이 되요
이런 상황을 피하기 위해서(물론 다른 이유들도 많지만), 위상동형은 글에서와 같이 정의해요