6月 기하 28,29,30 Solution
공통 영역에서는 밀도높은 계산과 비교적 낯선 발문과 조건을 제시함으로 시간을 소요시켰던 시험지었습니다.
선택과목에선 조금 숨통이 트이나.. 싶었지만 28번, 29번, 30번 모두 미출제요소와 특이표현을 삽입하여 까다로웠습니다.
바로 문제를 보시겠습니다, *(현장에서 응시한 원본 그대로이기에, 가독성이 조금 떨어질 수 있는 점 양해 부탁드려요..! :D )
28. 벡터방정식의 해석, 이등변 삼각형의 발견
1. QA+QP=2QM 중점 벡터 이용하기
2. 내적이 0 -> 수직 조건의 등장
3. WLOG, 임의의 p점을 세팅, Q를 작도해봅니다. -> 직선 OM은 현 AP의 수직 이등분선 -> 이등변삼각형의 생성 틀
4. |PQ|=|AQ|의 최소를 구하면, A에서 제일 가까운 Qm(1,-2)일때 |AQ|가 최소가 되며, 이때 |PQ|도 최소가 됩니다.
5. 원 밖에서 그은 두 접선 -> 합동인 직각삼각형 제조기 -> AQ는 원에 접하고, 삼각형 OAQ=OPQ가 됩니다.
29. 이차곡선의 방정식, 이차곡선의 정의요소
30. 벡터방정식의 이해, 이차곡선의 정의요소
#29.
1. 절댓값 풀기, y^2=1+-x^2/a^2 이니, 식을 정리하면 그림과 같이 쌍곡선과 타원을 얻을 수 있습니다.
2. PC+PD=일정 (루트5) -> 이차곡선의 정의 [타원]을 연상합니다. -> a=루트5/2, c^2=a^2=-1에서 c=1/2임을 얻습니다.
3. c+1=3/2=쌍곡선의 초점과 일치함을 확인합니다 -> A, B는 쌍곡선의 두 초점이 됩니다.
4. 쌍곡선의 정의를 연상합니다, BQ=AQ+2+12가 됨을 이용해 삼각형의 둘레를 구합니다.
#30.
1. 쌍곡선에 대한 정보 제시 -> 함수식을 작성합니다.
2. PF<PF' 조건을 만족하는 P는 x>0부분의 절반 쌍곡선 위에 놓임을 이해합니다.
3. WLOG, 임의의 P를 세팅, 쌍곡선의 정의를 이용해 PF = l, PF' = l + 6으로 세팅합니다.
4. 벡터방정식 쪼개기 (|FP|+1)F'Q = 5QP 에서 좌변의 F'Q벡터 앞에 곱해진 부분은 상수이고 F'을 시점으로 하니, 우변도 F'을 시점으로 하는 벡터로 분해합니다. -> 정리하면 (l+6)F'Q = 5F'P이고, F'P의 크기가 l+6, F'Q는 F'P의 방향을 연속적으로 따라가는 크기가 5인 벡터가 됨을 알 수 있습니다.
5. Q의 자취를 구합니다, 양수인 쌍곡선의 점근선의 기울기가 4/3이니, F'Q의 기울기 m 이 -4/3<m<4/3이 되는 부분으로만 생성됩니다.
*(5번 과정은 실전에서는 스킵하는 편이 시간단축에 도움이 되지만, 엄밀하게 Q의 자취를 제한함으로 명확함을 더할 수 있습니다. )
6. AQ의 최대 길이를 구하기 위해, 원의 중심을 경유하면 AF'+F'Q=5+5로, 이때 AF'의 기울기가 3/4이므로, 최대가 되는 Q는 Q의 자취 안에 존재함을 추가로 확인할 수 있습니다.
총평으로 기하에서 묵직함을 준 28번은 객관식이자 4점의 시작이지만 28 29 30중 가장 까다로웠고 벡터의 작도를 도형적 성질과 연계해야 하는 추론 문항이었습니다.
비슷한 느낌의, 추론을 요구하는 23.11.29의 평면벡터문항이 떠오르는데, 이 문제 역시 (다)조건에서 도형적 성질을 작도하는것이 핵심이었습니다.
앞으로 평면벡터를 연산할때 확대 축소(실수배), 평행이동, 내분, 외분등 교과서에서 다루는 벡터의 성질을 넘어, 그 작도되는 벡터들이 이루는 도형과 그 도형의 특수성을 다시 벡터 조건으로 녹여내는 연습이 필요할 듯 합니다.
29번의 경우 이차곡선의 식을 제시하는 특이표현과, 텍스트로 풀어둔 문장에서 이차곡선의 정의요소를 연상하는것이 핵심이었던 추론 문항이었습니다.
30번의 경우 제작년부터 틈틈이 보이던 이차곡선 + 벡터 융합 유형으로, 어떻게 식을 조작하면 이차곡선의 정의요소를 녹일 수 있을지를 생각해가며 풀이를 전개하는 것이 핵심이었습니다.
오늘 하루 모두들 수고하셨어요 ;D
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기하나 미적 하는게 낫나요? 지금은 문과라… 수학을 이과쪽으로 하고 사탐을 해도...
-
1년동안 8명가르쳤습니다,, 시급이 일반 알바에 비해 많이높아서 좋긴한데 가르치는게...
-
내인생계획 7
군대에서행정고시준비하기 일초에피셋합격 상초에2차합격 병장때최종합격 법률저널 인터뷰:...
-
이미지 관리 시작
-
공수2-1 8
매일마다는 아니어도 조금씩이라도 올리겠음
-
오늘 배영하다가 앞에 여성분 가슴을 실수로 찔렀는데 (손날치기자세로 다섯 손가락...
-
기원이 문제량 적다는 얘기가 있다하던데 상방 뚫기 용으로 강기원만한게 없나 반면...
-
말로 형용할수없을듯....
-
성인기념? 입학기념? 으로 지갑 팔찌 신발 가디건 목걸이 해서 740만원정도썼어욤...
-
수학뺴고다물어보셈
-
대학생분들 2
목표가 있나요?
-
오르비에 공유(?)해주실분
-
얘전에 봉사할때 정말 많아야 30정도? 눈으로 봤을땐 25정도 이지 않을까 하는...
-
ㅇㅈㅎㅈㅅㅇ 1
ㅇㅈ ㄱ
-
이러면 곧 키배터지나?
-
샤인미 N제 vs 한석원 4규 시즌2 기존 풀던 드릴/드릴드 끝나가서 풀어볼까...
-
26도 받으러 가야겠다 가서 국,수만 치고 나와서 점심먹어야지
-
근데그러면님들이싫어할거같애서
-
큰일이네 2
요즘너무늦게자는듯
-
아빠생일선물삿음 8
케이스도사고 삼케플까지들엇어 미역국도끓일거야
-
래브라도 리트리버 (?) 짱 귀여움
-
근데 금테를 달기에는 팔로워를 못 올리겠음 뻘글이나 써볼까요
-
이거 구라겟지 2
???
-
문과분들께 여쭤봐요 13
1. 혹시 고2때 사탐 몇과목 하셨나요 2. 과탐 진로선택과목도 하셨나요 3....
-
이쯤되니 의예과 더블링 어케 해결할 지가 궁금해짐 16
7년제? 유급은 진짜 전교 1-2등끼리의 싸움이라 비관 자살 나올 것 같음 26까지 받아버리면...
-
ㅇㅈ 0
메타열어줘
-
48명 남았네요
-
어느정도 안도함 실제로 그 덕에 비교적 편하게 본듯
-
어쩐지그댄내게말을안해요 허면그대꿈속으로날아가 살며시 얘기듣고올래요
-
https://orbi.kr/00026573385 낼부터 전단지 바로 만들어볼려고요
-
그랬었다구요
-
너 나이로 벌써 4수잖아 남자라서 군대도 가야되고 재수로 서강대까지 갔으면서 꼭 서울대를 가야겠니?
-
환급가능 대학에 올해 신입생으로 있는데 올해 수능보고 그냥 복학하면 환급 되나요?
-
어땠음...?
-
위험한 발언 10
발이 얼면 위험합니다 는 장난이고 개인적인 사견으로는 23 25수능처럼 남은 26...
-
하코다테 오릉곽 산책하려고 점 찍어뒀는데
-
그러면 역으로 반수로 딱 5.9개월치만하면 풀컨디션으로 수능장 입성 ㄱㄴ? 진짜 나...
-
ㄱㅂㅈㄱ 수학 오지게 파고 탐구 선택과목 정하기
-
허리디스크 있는 분 10
지금 2-3분도 못 걷는 상태인데 지금 반수 박고 하루종일 의자에 앉아있으면 ㅈ될까요?
-
태어날때부터라면 너무 슬플거같은데
-
있으면 ㄹㅇ리스펙
-
지금쯤 헬스도 하고 알바도 하면서 행복하게 지냈을텐데……
-
할일 하며 지내면 되고 전적대 자퇴 준비하고 이래서 조발이 좋아
-
한 번 확인할까 그냥 덮어놓고 발표날까지 둘까
-
뭔가 재밌음
-
산화되려나 글 삭제 프로그램은 만들어야하는디
-
공익가고 싶음 4
허리디스크로 공익 받고 싶어요
-
제 친구가 물2 안듣고 서강대 화생공 종합으로 붙었는데 농어촌이라 가능했던건가요...
Goat
와 그림 진짜 예쁘다
찾아와주셔서 감사드려요 :D
여름방학때 기하공부하고 제대로 한 번 읽어볼게요!
항상 좋은 글 감사합니다
저야말로 항상 따뜻한 말씀에 감사드려요 ㅎㅎ
스크랩 on
30번 진짜 풀이과정 다맞췄는데 답을6으로왜썼지 하ㅜㅜ
아 28 거의 다 풀었는데 쩝
아니 센세 오늘 현장응시하셨나요
오랜만에 모교에 가니 선생님들 다시 보고 좋았네요 ㅎㅎ
샤이님도 정말 수고 많으셨어요 :D
따뜻한 말씀 감사드려요
알게 됐었는데 볼 때 마다 글을 잘 쓰시는 것 같아요 ㅎㅅㅎ
좋게 봐주셔서 감사해요 ㅎㅎ
더 분발하겠습니다!
반가워요!
응원 감사드려요 선생님 :D
연쌤또봄?
감이 날카로운데 안보면 아깝다는 생각도 드네요
물론 학교 생활도 충실히 할거랍니다
아 티에이??
앗! 오르비고닉 현우진보다 낫다!
머래
제 수학 풀이의 근간은 현역때 수강한 뉴*입니다 ㅎㅎ
기하 어려워서 표점 동점각인가 했는데 낮네요
그래도 이정도 표점차면.. 만족합니다
찾아와주셔서 감사드려요 :)
답은 역시 기하
기벡고수 치사토 찬양하기
기 벡...?
기하컨텐츠는 사랑입니다..
고마워요 :)
28번 첫 발상이 저한테는 어렵게 느껴졌네요 … Q가 동점이고 P도 동점이다보니 A랑 P를 엮어서 중간벡터로 생각할 생각도 못해보고 괜히 원의 중심으로 분해하려다가 꼬였어요 잘 배우고 갑니다!
저야말로 도움이 되었다니 기쁘네요 :)
저 28번 뒤지게 안보이다가 이등변 발견하고 그냥 밑변이랑 높이 일차식 세워서 좌표로 풂... 30은 식처리가 결국 안됨 ㅠㅠ
28번 이등변 발견한 후 내적 계산은 여러 방법으로 해도 괜찮아요! 오히려 수직 틀이 명확해 좌표가 더 빠를수도 있을 것 같네요 :)
30번은 저도 처음에 우변 F로정리했다가 꼬여서
지우고 F'으로 다시 시도했답니다.. (22.11.29 이후로 식조작을 못하면 접근을 못하는 벡터문제는 흔하지 않았는데 갑자기 들어오니 저도 까다로웠어요)
30번은 (a+6)F'Q=5F'P에서 F'Q=5, F'P=a+6을 생각을 못해가지고 식처리 어쩌라고? 하다 끝났네요
다음부터는 반드시 한방에 풀리실거에요.!
고마워요 태루님 :)
ㄹㅈㄷㄱㅁ
기하 원래 많아봐야 하나 틀리는데 이번에 28 30 틀렸네요
다행이 1 뜨긴 했지만 난이도가 상당해서 풀면서도 풀고 나서도 참 재밌었던거 같습니다.
오늘 신성규쌤 해설강의 들어보니까 순수 난이도는 미적<기하가 맞다네요
저도 30번 식조작, 28번 관찰에서 시간이 끌렸었네요..! 평가원 기출 중 22 이후 상당히 어려운 문제가 맞아요 :)
애초에 기하가 재밌어서 기하 선택한지라 어렵지만 너무 재밌었습니다
최근 들어서 이런 멋진 문제는 참 오랜만인거 같아요
흥미를 가지고 파는것만큼은 이길수 없죠 :D
항상 응원하겠습니다!
와 이분한테 기하 과외받고 싶다..