6평 확미기 손풀이 및 분석
시작하기 전에
1. (작성 시작 시간 기준) 확미기 전부 손풀이로 올려주신 분 한 분쯤은 계실 줄 알았는데 찾아보니 안 보이더라구요
2. 그래서 냅따 패드 켜서 풀이 작성했습니다.
3. 손풀이는 처음인데 손목터널증후군의 고통을 깨닫게 되더군요.
각 선택과목별로 총평과 커멘트 간단히 적어놓았습니다.
전 이제 자러 가야겠습니다.
확률과 통계
23/24번 특이할 것 없는 무난한 문제
25번 전형적인 이항정리 문제
26번 P(A∪B)=P(A)+P(B)-P(A∩B) 라는 성질을 이용한 문항, 여사건의 확률을 구하는 문제로 접근할 경우 꼬일 수 있기 때문에 유의했어야 한다.
27번 원순열에서 '이웃한' 키워드를 적용한 문제, 쎈에서도 충분히 볼 법한 문항이다.
문제 풀이의 관건은 '합이 11'이라는 대목에서 숫자가 좀 큰 거 아닌가 하는 의심을 하여, 이것을 여사건으로 승화시킬 수 있는지에 대한 것이다.
28번 사설 문제들을 많이 풀어봤으면 이런 유형은 '홀짝성' 또는 '뒤집는 횟수' 등의 개념으로도 해석할 수 있다는 사실을 아마 잘 알고 있을 것이다. 동전 각각에 집중하기보다는 '앞면'의 개수, '뒷면'의 개수에 주목하여 변화를 살펴보는 것이 중요하다. (미적러 이슈..) 다소 노가다로 풀긴 했는데, 아마 평가원은 여기서 보다 참신한 풀이를 기대하지 않았을까 생각한다.
29번 정말 간단한 확률 계산 문제. 40이라는 수 때문에 처음에는 이항정리를 이용한 문제인가 싶지만, 실상은 "너 얼마나 계산 잘해"를 묻는 문제인 듯 하다. 정말 중학생 수준에서도 풀 수 있는 문제이기에 이 문제를 틀렸을 경우 반성해야 한다.
30번 케이스 구분과 개수 세기의 핵심 문항. 사설에서 한 번쯤 봤을 법한 유형이다. "정해지는 것"과 "정해지지 않는 것"을 정확히 구분하여, 케이스 구분하는 것이 관건이다. 케이스를 구분할 때는 가급적 3가지 이하의 경우가 나오도록 구분하자는 마인드를 유지하면 나름 쉽게 풀린다. 다만, 계산량이 조금 있어 살짝 주저할 수는 있다.
미적분
23/24번 특이할 것 없는 무난한 문제, 24번은 살짝 헷갈렸을 수 있다.
25번 무한급수의 수렴 조건을 바탕으로 간단하게 계산하면 되는 문제이다. 전형적인 내신 문제이다.
26번 삼도극의 순화 버전. 이 문제도 사실 근사를 쓸 수 있기 때문에 삼도극 문제에서 존재하던 단점은 동일하다. 이것을 의식해서 그런지는 몰라도 굳이 답에 sqrt(5)-1 이라는 이상한 숫자가 섞여 나오는 것을 확인할 수 있다. 이는 아마 4t로 주었을 경우 답 예측이 어려워 근사로 푼 학생들에게 유불리가 너무 클 것으로 생각했기 때문이라 보인다.
27번 그냥. 계산. 파티. 뭔가 노리고 낸 문제 같지도 않고, 다만 두 선분 AC, AB의 길이비를 분석할 때 x좌표 비 또는 y좌표 비를 이용해서 해석할 수 있다는 점이 교훈인 문제이다. 조금만 계산을 깔끔하게 줬으면 조금 더 좋았을 것 같은데, 미분을 유도하는 문제 상 이것이 최선으로 보이기도 한다. 9평/수능에 걸쳐 이러한 유형의 문제가 계속 나올 것으로 예상되는 만큼 '특정 상황에서 최대/최소 구하기' 문제는 기출이나 사설/N제 등을 통해 계속 연습해야 한다.
28번 28번이라는 자리에 대비하면 솔직히 많이 쉬운 문제였다. 오히려 불필요한 계산만 많이 해서 오답률을 높이려는 시도인지, 답을 깔끔하게 만들려고 한 시도인지 헷갈린다. 계산은 역함수의 미분법의 원리를 알면 쉽게 풀린다. 객관식 문제였던만큼 가급적 맞고 가야 하는 문제였다.
29번 미적분에서 꽤 마음에 드는 문항이었다. 미분가능 조건은 분명 연속성+도함수 연속 이렇게 2가지 조건만 존재하는데, 어떻게 3가지 미지수를 결정할 수 있을지에 대한 의문을 생각하면 아이디어가 쉽게 떠오른다. 함수 제시 방식도 x=b의 좌우에서 +, -로 주어 직접적으로 학생들이 유추할 수 있게 하였다. 계산량도 그리 많은 편은 아니기에 얻어갈 것이 많은 잘 만든 문제라 생각한다.
30번 쉽게 풀릴 것 같지만 은근히 조금씩 막히는 문제이다. 무엇보다 평소 평가원에서 삼각함수의 덧셈정리와 관련된 문제를 잘 내지 않다가 이번에 갑자기 덧셈정리 문제를 30번에 갖다 박아놓은 점이 신선하게 느껴질 수 있다. 식 정리를 어떻게 할지, 초월함수와 무리함수 사이를 왔다갔다 하는 과정이 답에 다다르는 난이도를 확 바뀌게 한다. 약간의 직관(an+1 - an = π)과 끈기 있는 계산을 하다보면 답은 자연스레 도출된다.
기하
23/24번 특이할 것 없는 무난한 문제, 23번에서 벡터 b의 계수도 미지수로 줘도 되지 않나 싶다.
25번 고1 개념이 약간 융합된 문제. 항상 하던대로 원 밖의 한 점과 원 위의 한 점 사이의 거리가 최소/최대가 될 때를 분석하면 끝나는 문제이다.
26번 내신에서 볼 법한 전형적인 문제. 그냥 하라는 거 하면 알아서 답이 나온다.
27번 좌표 분석이 전혀 들어가지 않고, 오로지 이차곡선의 성질만을 이용해서 문제를 풀어야 하는 신기한 문제. 이런 문제는 자칫 뻔한 답으로 연결되기 쉬운데, 그렇지 않고 계산을 해야만 답이 나올 수 있는 구조로 만들어 개인적으로 마음에 들었던 문제이다.
28번 수식행의 3번째 조건 해석이 굉장히 까다로운 편이다. 이러한 유형의 조건 해석은 벡터를 분해해서 (벡터) · (벡터) 형태로 만드는 것이 관건이다. 여기까지 만들어도 바로 끝나지 않고, |PQ|가 최소가 되는 점 P, Q를 따로 찾아야 한다. 심지어 답 상황에서 점 Q의 y좌표가 음수이기에 이를 생각하는 과정이 상당히 까다로웠을 것이다. 이러한 유형은 항상 비슷한 형태의 풀이로 진행되게 나오지만 자주 풀지 않으면 점수를 놓치기 쉬우므로 자주 연습해야 한다.
29번 이 시험지에서 가장 이례적인 문제라고 할 수 있다. 문제의 절대적인 난이도는 높지 않지만, 이차곡선에서 절댓값을 도입한다는 것 자체가 학생들에게 굉장히 난감한 요소라고 볼 수 있다. 하지만, 모든 절댓값 문제는 결국 케이스 구분이 핵심이라는 점을 고려하면 그렇게 어려운 문항은 아니다. 케이스를 나누면 두 종류의 이차곡선이 나오게 되고, 각각의 이차곡선을 해석하면 답은 간단히 나온다. 최근 평가원은 이렇게 쉬운 문항에서 변별력을 줄 때 '낯선 표현'으로 오답률을 높이는 것으로 보여진다.
30번 30번 자리 치고는 굉장히 간단하게 풀리는 문제였다. 주어진 조건이 '벡터의 평행'도 내포한다는 점을 잘 해석해야 한다. 전반적인 계산은 매우 간단하고, 주어진 조건도 쉽게 주어져서 1~2등급대 학생들은 이 문제를 맞히는 것이 타당했다. 마지막 삼각부등식이 어렵다고 여겨질 수도 있는데, 발상이 전혀 어렵지 않은 구조이므로 이를 못 떠올렸다면 기출 분석을 조금 더 열심히 해야 한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나도결혼하고싶다
-
협문이 뭐에요? 4
네이버 치니까 무슨 건축이런거밖에 안나오는데
-
왠지 그녀도 왓읗까
-
님들은 구하지 마셈 제가 다 쪽지보낼거니까
-
독서보다 문학을 더 못 합니다.. ㅠ 문학 읽을 때 자꾸 지문으로 돌아가서 읽고...
-
독재학원 다니는 것도 벌벌 떨면서 가게 되는데 재종 다니는 분들은 와우...
-
표본은 미워도 과목은 사랑하면 개추 ㅋㅋㅋ
-
경제는 좀 있다는데
-
고대에 자리 있으려나
-
그냥 수능 끝나고 게임 너무하니까 질려서 드릴드 좀 폈는데 학교 가져가는 건 에반가
-
나대지말고~ 나대지말고~
-
협문 교차 비추합니다 35
제발 하지 마세요. 교차 자체도 비추합니다. 주변에 문과 안맞아서 힘들어하는 사람...
-
ㅃㅃ
-
이 성적대는 공부방향 고민하는게 크게 중요하진 않고 일단 뭐라도 하는게 맞다는건...
-
재능의 한계가 두려워서 열공안하는 것두 이해는 안되는... 제가 진짜 쫌 멍청하고...
-
괜히 남고와서 재수까지 박았네 아 ㅋㅋ 중딩때가 엊그제 같은데 시발ㄹㄹㄹ
-
국숭보다 높게 가능한가요?ㅠㅠ 과는 상관없어요ㅠ
-
우우다들쪽지줘
-
높공 되는지 궁금합니다..
-
팔 힘이 거의 여자와 동일하지 않을까 싶은
-
학교가기싫다 0
심지어 시험봐야함 나는수능끝나고공부두뇌초기화됐는ㄷ시험을본다니..
-
딱딱하게 언 음료수나 설레임 같은거 빨리 녹이고싶을때 전자렌지에 넣고 돌리는건 안되나요??
-
뭐부터 하는게 좋을까요? 그리고 기출은 기생집이 나을까요 아님 다른 기출문제집이 더...
-
국수꼬라지상 하위 5% 예상함
-
아tlqkf 5
집인데벌써집가고싶다
-
여기는 뭐임? 의대임?
-
친구가 공대교수님(젊음)이랑 친한데 말나오고있다는데 한군대 문과캠 한군데 이과캠으로 쓴다함
-
영어 4등급 진짜에요?? 과는 문과 낮은과 상관없어요
-
중경외시 2
화작83 기하88 영1 지1 33 지2 37 외대 아랍어과 가능? 고속 진초, 낙지 5칸
-
다시 태어난다면 7
집착얀데레미소녀가 되고 싶다
-
미쳤네 걍
-
지금은 암절컷정천재라는 사실을 알아버림뇨
-
전 2년동안 4번 해봤어요 세번은 상대쪽 잘못(2당함 1해봄) 한번은 이유 모르게 손절당함
-
국- 김승리 현강 수- 현우진 풀커리(미적 시발점부터 시작 / 수1,2 수분감부터)...
-
귀납적 수열이 사라졌으면 좋겠다 수학적 원리도 별로 없는 노가다
-
아 학교가기싫다 0
월공강 못만들어줄거면 오후수업으로라도 잡아달라고요 #~#
-
11/12에 패스 구매했는데 플래너 언제 올까요? 패스 11/12 전에 구매하신 분...
-
재능론이 맞는거같음 수능 두개 틀린 문과황을 두명정도 봤는데 하 둘 다 적백이햄에...
-
사회계열 가고싶은데 가능할까요? 어디까지 가능할지 봐주시면 감사드리겠습니다…. 글이...
-
수능끝나니까 이 날씨에 치마를 입고 싶어져써
-
솔직히 평가원 국어 개그 욕심 있는게 아닐까 생각함 6
수능 끝날때마다 밈 하나씩 돌아다니는 거 보면
-
틱톡 광고 존나 많네
-
공스타 팠다. 10
ddochi_hedge 본격적으로 공부 시작하기 전엔 이것저것 올릴 듯
-
아 심심해 0
블루아카이브 스토리나 봐야겠다 겜 질렸어
-
남친 구합니다 32
일단제스펙은 인서울4년제대학재학 키165 수학1등급이에요
-
낼 대만간다 3
연말에 일본가구 설엔 뉴질랜드가구 ㅎㅎ 걍 살자 수능 좆까
-
오르비에 계시던 분들 많이 가셔서 아시는 분 계시는지 모르겠는데 일단 좀 하루이틀...
-
요래 뜨는데
확통 28 세번째 케이스 마지막 계산에서 2H3을 3H로 잘못 쓰신 것 같아요! 2H3이어야 4가 나오지 않나용??
미적 30번은 약간의 근사(+극한 상황을 상상)는 필연적이었던거죠.?.?
친절한 풀이 감사합니다 저같은 빡통도 드디어 알아볼수있는 해설지가 생겼네요 ㅠㅠ
감사합니다