[강윤구T] 고정관찰과 쉽알(feat. 코어테마 특강 개강안내)
안녕하세요 강윤구입니다.
(이전의 글 중
조건의 필연성을 부여하지 말자. 상황에 맞춰서 필요한 조건을 찾는 방식으로
문제해결의 방향성을 바꾸자. (문제해결의 올바른 방향성 https://orbi.kr/00067506624)
게시글을 보시고 이 글을 보시면 좋습니다.)
오늘은 고난도 문제에 대해 말씀드려보도록 하겠습니다.
현재 수능수학에서의 고난도 문제는 단 하나만 출제되고 있습니다.
물론 이제 대다수의 학생들은 문제마다 낯설고, 문제가 다 달라보이는데 무슨 소리냐
라고 생각하겠지만 이는 초보자의 관점이기에 그렇게 보이는 것입니다.
초보자는 세분화를 통해 부분부분을 이해하고 싶어하고
실력자는 거시적인 시각으로 통합적으로 이해하고 싶어합니다.
우리도 기본공부를 끝낸 시점에서는 통합을 이루어내야 한다는 것입니다.
수1, 수2, 미적을 공부하는 것이 아니라 수능수학을 공부해야 한다는 의미입니다.
그러면 현재 수능수학의 고난도 문제는 어떤 특징이 있는가?
''정해지지 않은 것이 여러 개 있다.''
이것 뿐입니다.
점화식이든, 그래프 추론문제든, 도형의 해석문제든 우리가 어려워하는 문제는
모두 정해지지 않은 것이 많아서 어려움을 느끼는 것입니다.
예를 들어볼까요?
삼각함수 활용문제를 만났는데 삼각형이 1개밖에 없습니다.
이 문제가 어려울 수 있을까요? 아니죠. 그냥 법칙을 쓰면 끝납니다.
점화식 문제를 만났습니다. 점화식도 있고, 초항도 있습니다.
이런 문제가 어려울 수 있을까요?
그래프 문제를 만났습니다. 그런데 함수가 f(x)뿐입니다.
이런 문제가 어려울까요? 역시나 아닙니다.
문제가 어렵게 느껴지는 것은 구성요소가 여러개 있으며,
그 요소들이 정해져 있지 않기 때문에 어려움을 느끼는 것입니다.
삼각형, 원의 개수가 많아서 어디서부터 법칙을 써야할지 모르는 문제
f(x), g(x), h(x) 함수가 여러 개가 제시되어 있는 문제,
점화식의 항이 구체적으로 정해지지 않아서 확실하게 나열할 수 없는 문제
등등 이렇게 정해지지 않은 것이 여러 개 있기 때문에
어디서부터 어떻게 손대야 할지 모르고 그 시작의 어려움때문에
문제가 낯설다. 어렵다. 킬러다.
이렇게 받아들여지는 것입니다.
그러면 이 문제를 어떻게 해결하는가?
다음의 세가지만 명심하면 됩니다.
1. 고등학교 수학에서 동시에 변하는 것을 한번에 관찰할 수는 없다.
고정하고 관찰한다.
https://www.youtube.com/watch?v=6OVWQVyFcgo&ab_channel=%EC%9D%B4%ED%88%AC%EC%8A%A4%EC%B1%84%EB%84%90
2. 고정할 때는 쉽고 알고 있는 요소, 즉 쉽알을 고정하고 해석을 시작한다.
그리고 그 구성요소의 관계를 이용하여 쉽알의 정보를 모르는 것으로 넘긴다.
https://www.youtube.com/watch?v=evINCSU_jhk&ab_channel=%EC%9D%B4%ED%88%AC%EC%8A%A4%EC%B1%84%EB%84%90
3. 우리는 아무것이나 고정하지 않는다. 결과를 통해 고정해야할 것을 미리 예상한다.
그리고 검증한다. 즉, 예상과 검증으로 동시에 변하는 문제를 해결한다.
글로 적기에는 너무나 중요하고, 수능을 관통하는 핵심이기에
영상으로 올립니다.
저 짧은 영상만으로도 고난도 문제라는 것이 무엇인지, 그리고 그것을 쉽알이라는
너무나도 당연하지만, 많은 학생들이 간과하고 있는 두 글자로 돌파할 수 있음을 깨닫게
되실 것입니다.
수능은 잡스러운 지식으로 내 머리를 채운다고 잘 보는 시험이 아닙니다.
인간의 본성을 논리적인 생각으로 극복하여 체계적인 생각을 완성함으로써
정복된다고 보시면 됩니다.
쉽알, 굉장히 간단하고 당연한것 같죠?
하지만 사람은 모르는 것에 집중하고, 그것에만 시선이 가게 되어있습니다.
작수 22번도 누구나 존재하지 않는다는 결론에만 집착할 때,
제대로 공부한 사람은 그 이외의 알고 있는 것으로 문제를 해결해 나겠죠.
영어의 빈칸채우기를 빈칸을 보고 알 수 없듯,
수학도 쉽고 알고있는 것으로 모르는 것을 구해나가는 것입니다.
저 위의 두 영상을 보고 공감이가며
제대로 된 공부, 합리적인 공부를 하고 싶으시다면
5월 12일부터 개강하는 4점공략법 코어테마 수업을 들어보시면 좋을 것 같습니다.
4점공략법 코어테마(굳이 6월 대비라고 칭하지는 않겠습니다.)
1. 수강대상 : 4점공략법 스타터를 완강한 학생, 혹은 2~3등급 이상의 학생
2. 강의시간 : 5월 19일 개강(5월19일~6월 2일)
일요일 오전 9시부터 12시반까지 3회 특강
3. 강의내용 : 4공법 요약, 점화식, 삼각함수 활용, 그래프해석, 적분
4. 교재 : 프린트로 진행
입니다. 이 특강 듣고 6모 후 4점공략법 본편 인강 수강하시는 것도 좋으니
많은 관심 부탁드립니다.
4점공략법 본편을 인강 혹은 현강으로 수강한 학생은 오지 않으셔도 됩니다.
들으신 것 복습하세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레전드 민지네컷 10
캬
-
본인이 그게 방해된다고 느끼는 순간 방해되는거고 방해 안되고 이정도는 커버할 수...
-
12월동안 운동 강추함.....현역땐 어떻게든 매일 학교 갔던거같은데 재수생...
-
실채가 나와야 알겠지만 가채점 예상이 사실이라면 어떻게든 확통 억빠에 억빠를 더해서...
-
탐구가 얼마나 불일지 예상도 안됨 ㅋㅋㅋ 08년생들은 단체 안락사일듯
-
화작 0
부정적인 글들이 많이 보이던데 98점 백분위 99 뜰 일은 이제 없을까요? 처음에 설렜네..
-
더 자면 너무 늦을 듯 말년이어도 선은 지켜야지
-
노래방을 갔다가 오면 다음날 목이 너무 아파요
-
진짜 27번이 수호해준건가 음
-
⭐️틱ㅌ라이트 오늘 접속안한분 45,000원 중복 지급! 5
기존 회원 한정 이벤트입니다 이벤트 링크 통해 접속하시고 45,000원 받으세요...
-
1컷이랑 2컷 2컷이랑 3컷 차이가 좀 크게나오는듯 업체들 전부 평균내면 화작기준...
-
뭐해? 0
올려
-
하.. 모르겠고 1
잠이나 자자
-
화확영생윤사문 백분위 90 97 2 94 100 원점수 89 96 2 39 50...
-
11월 할 것 9
친구들과 여행 전역복ㆍ전역모 맞추기 운동 재개 또 뭐있지 추천 좀
-
진지하게 확통 1컷 96 지금 다시 보니까 100은 너무 뇌절이었음 ㅈㅅ 화작...
-
여태까지 내 마음가짐은 별로 의미 없고 실력이 전부라고 생각했는데 좀 반성하게 됨....
-
치이네
-
철학적 똥글 7
ntr은 순애다 - 라는 주장을 하는 친구가 잇엇음뇨 로미오와 줄리엣처럼 진정한...
-
연애말고 2
미쿠하세요
-
단독토벌 가능?
-
내가 쓴 글 8
모바일에서 내가 쓴 글 어케 봐요? 일단은 제목 기억해서 검색으로 찾아보는데..
-
아 너무 웃김 0
옆에 형이 ㅈㄴ 웃기네를 아 미안 개웃기네로 순화할게 하는데 이 형 미치겠네ㅋㅋㅋㅋ
-
정시 예상 등급컷 의문사 안당할라면 원점수 등급컷보다 표점 등급컷 보는 게 더 정확하겠죠?
-
생명 1등급은 안받아도 되는데 2등급은 받을수 있으려나.. 고2 내신...
-
왜 인생이 점점 꼴박하고 있는가,,,
-
수학 3받고 경희대 의대간 새끼 계속뜨는데 너무 화가남
-
있어 뭔가 대학생되면 술 아침까지 마시고 연애하고 이런 거 사회가 대부분...
-
솔직히 이제 언매 미적이 표점에서 역차별 당하는 느낌이 강함 11
작년 언매미적 올해 화작미적으로 수능봤고 수논준비하면서 확통도 충분히 공부하고...
-
미쿠 이것저것 2
미쿠 좀 찬양해줘라
-
원점수 언매 91 미적 100 영어 1등급 물1 47 화1 45
-
롤 되게 어럽네 2
오랜만에 하니까 사일 아칼리 말고는 잘 못하겠네요
-
과메기를 다 널고 나서야 늦은 저녁 식사가 시작됩니다. 0
식은밥을 넣어 마시듯이 먹었던 물회는 포항사나이들의 음식이었습니다.
-
존나 섹시한 뇌섹 근육질 남자가 소속과도 안밝힌상태로 첩보영화찍는 기분이지 않을까...
-
힐러충특 4
좆같이하고 아가리톰
-
화학에서 바꾸려는데 뭐로 바꿀 까요? 지학은 좀 ㄱㅊ게 하는데 화학이 극복이 안됌 ㅅㅂ!
-
오늘실버가야지 25
-
ㅇㅇ..
-
올해 수능 기준 수학 공통 12~15 , 20~22 틀린 수준이면 실전개념 먼저...
-
4드문해 0
여기서 4규 문해전 시즌2 풀라는거임? 시즌1인가
-
맨밑엔 제2외 4등급입니다 메가기준 405.5점이고 진학사기준 403.3점인가인데...
-
5월에 공군 떨어지면 미필사수 ㄷ 7월 입대해서 찍턴 노리기 (근데 이럴거면 걍...
-
탈릅은 안 해야겠다 나중에 틀딱 되면 여기 와서 가끔 질문이나 받든가...
-
어둠의 표본? 0
일단 저는 다 손채점 하긴 함
-
이런 질문 좀 그런데요 12
차단 어캐함뇨
-
어휴
-
엄마아빠미워 3
우울하다 나는 어렸을 때부터 수학 못 했고 내가 그거 알아서 중학생 때부터 유학...
4공s 열심히듣고있습니다 부지런히 커리따라가겠습니다
굿입니당
어디에서 신청해야 하는지 알 수 있을까요?
내일 신청링크가 생긴다고 하네요
복영 제공되나요?
수능까지 제공됩니다.
현강 4공법이후 커리랑 언제쯤 개강하는지 알수있을까욥
강북청솔로 특강와주세요 ㅠㅠ
60점대는 듣기 어렵겠지요....