2024 수능대비 "SUM 모의고사 season2" 배포
23-2 SUM 모의고사 문제지.pdf
23-2 SUM 모의고사 정답표.pdf
23-2 SUM 모의고사 해설지.pdf
SUM 모의고사 Season 2 정오표.pdf
안녕하세요. 서울권 수학교육과 연합동아리 SUMΣ입니다.
저희는 서울에 있는 9개의 학교 수학교육과 학생들이 모여 수학교육 분야에서 할 수 있는 다양한 활동을 하며 교류하는 연합동아리입니다.
(건국대, 고려대, 동국대, 상명대, 서울대, 성균관대, 이화여대, 한양대, 홍익대)
올해 2024학년도 수능 대비를 위한 자작 모의고사를 배포합니다.
SUM 모의고사는 모든 선택과목으로 이루어져 있으며
낯선 상황과 다양한 유형들로 구성되어 있습니다.
오랜 시간 동안의 문항 제작과 검토가 이루어진 모의고사로 믿고 푸셔도 됩니다.
SUM 모의고사와 함께 수능 대비 열심히 하셔서 꼭 좋은 결과 얻으시길 바랍니다.
정오사항
공통 17번, 기하 30번 문항과 공통 20번 해설에 정오사항이 있어 정오표를 업로드합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다리찢기도 오랜만에해보니까 Cos(theta) = -1/2정도 나오는거같음 에반데
-
내년기하: 생2에게 따잇 뭔가 느낌이 그래
-
언매 공통 3틀 92 미적 공통 4틀 선택 4틀 69 각각 몇등급 예상하시나요?...
-
무휴반 삼반수를 해볼까
-
성대인듯 연대, 서강대, 성대, 경희대, 외대, .. 다 가봤는데 성균관대가...
-
최저러라서 간절합니다 언매 공통 3틀 미적 공통 4틀 선택 4틀입니다
-
오늘의 깨알상식
-
야스장 입개루 4
야스 ㄱㄱ
-
누가 옆 시험지에 물 쏟은 사례가 있는건가
-
올해는 뉴분감으로 했는데 진도가 늦어서 9모 끝나고 다함 2026 대성 19패스...
-
못보면 당연히 아쉽고 잘봐도 아쉬운게 수능이구나 너무 잔인하군..
-
공통 2틀 언매 2틀 91점인데 EBS로는 표점 130점 1등급이고 메가로는 표점...
-
다 푸셨나요? 다 풀어야 합격이겠죠??
-
문과라인 봐주시면 감사드리겠습니다 사회계열 가고싶은데 가능할까요? 어디까지 가능할지...
-
미적에서 기하 1
69 1컷, 안정1 이었고 수능 2 떴는데 28 30 거의 고정으로 못풀면...
-
동아시아사 지금 메가 대성 둘다 3컷이 39점인데 제가 40점이거든요 4등급 뜰...
-
특히 변수에 취약 멘탈 약함 옆에서 코 훌쩍거리면 신경쓰임
-
윤도영도 사태 초반 나대다가 지금 아가리 닥치고 버로우탔구만
-
어제 동국대 문항 오류로 2번 답이 안나와서, 그것 때문에 1,3번 제대로 못 푸신...
-
콱) 헐 개잘해 4
소름돋아
-
부탁 드려요. 언매 (화작보다 적성에 더 맞아서) 미적 (최저러라서 미적 또는 기하...
-
진짜 무릎꿇고 빌게요 제발요 진짜로
-
은테 고마워요 11
이걸로 뭘 할 수 있나 싶긴한데 이쁘긴 하네요
-
아니 어이가 없어서 올려봄 이게 내가 잘못한건가? 질문 하나 하는게 꼬치꼬치 캐묻는...
-
헬스
-
사문 생윤으로 사탐런 하신분들 어떠셨는지 궁금합니다
-
지구과학1컷 0
지구1컷 42될까요.? 43점인데.. 44되면 안되는데 왜 대성은 44로 잡는지....
-
무조건 하향지원하세요 수시 어지간하면 버리지 말고 챙기세요
-
제곧내 둘이 똑같이 대비해도 되겠져?
-
재종반 질문 0
기하 수업이 있는 재종학원이 있나요?
-
미-7 77 0
미-7 77점 진짜 2등급 힘들까요? 그냥 포기하고 기다리는게나을까요
-
미적96점 이상 아니면 기하나 확통을 하는게
-
본인은 6월: 44 9월:50 수능:44 떳음 제가 3학년 들어와서 겨울방학때 첨...
-
문득 궁금해짐 삼육약 이런곳 되나
-
30퍼라도 화작 미적 영어 세지 사문 91 94 4 89 90 백분위 이렇단...
-
한문제만더맞았더라면
-
광명상가도 힘든가요??ㅠㅠ
-
우리가 알고 있는 교과과정이 역사속으로 사라지는 거임 존나 뭔가뭔가일 듯
-
과탐으로 솔직히 대학 못 가겠어요ㅠㅠ 미적도 개ㅄ이고 과탐도 개ㅄ이고 제가 원래...
-
얼버기 2
안녕하세요
-
혹내수? 17
ㅇㄷㄴㅂㅌ
-
이시간에 4
익숙한 고닉이 많은것으로보아 그냥 이시간에 다들 눈이떠지는데 할게없어서 오르비를 하는것이군
-
ㅋㅋㅋ 솔직히나도 심심할때마다 수학실모한개 풀까 생각들긴함 ㅋㅋ 7
이거 ㄹㅇ임 중독이야 중독...
-
부모님은 복학 후 취업해서 안정된 삶을 살기 원하시고 저는 꿈을 이루고 싶고...
-
반수하면 지구 버리고 사탐할건데... 쌩재수는 초반에 열심히 안 할 것 같아서요...
-
치면 이분이 쓴 글 뜨는데 진짜 수능이 다가올때 느껴지는 감정들 다시 느껴볼 수 있음 ㄷㄷ
-
전이미 오수나인데요....
-
넷플 좀 보다가 루즈하면 풀어야지
-
얼버기... 5
알람 없이 계속 6시 반에 눈이 떠지는 걸 보니 얼릉 공부를 시작하라는 신의 뜻이야
-
친구랑 만나서 답 맞추기... 영어때 친구랑 답 맞춘거 틀린게 기억났지만 내가...
와!
안녕하세요
기하 30번의 문제 구성/해설에 궁금점이 있어
댓글을 남깁니다
해설지에서는 부가적인 설명 없이
PQ=OO'임을 사용하여 문제를 해결하셨는데
첨부드린 그림과 같이 PQ<OO'인 경우를
다루시지 않은 이유를 조심히 여쭤봅니다..!
직선 l은 두 구에 모두 접하는 직선입니다. 첨부된 첫 번째 그림은 접하지 않고, 두 번째 그림은 두 구의 반지름이 다릅니다. 직선 l과 직선 OO'은 평행하므로 사각형 OO'QP가 직사각형이 된다는 것을 알 수 있습니다.
xy평면에 수직인 평면을 삼각형 OQR로 생각하고 문제를 다시 읽어 보시면 상황 이해가 빠를 듯합니다.
첫 그림이 접하지 않는다는 것이 이해가지 않습니다. 구에 추가로 그려진 원은 OPQ의 단면이며, 단면에 생긴 원에서 PQ가 접하는 상황을 말씀드리고 싶었기에 추가로 두 번째 그림을 그렸습니다. 굳이 평면 OPQ가 O'을 포함하지 않아도 접선의 경우가 나옴이 저의 요지입니다.
직선 PQ와 OO'가 평행한 것은 납득이 되실까요?
애초에 평행하지 않다는 내용이
제 질문에 함축돼있습니다
조금 더 검토해 보고 답글 드리겠습니다.
그림까지 친절히 그려 주심에 대단히 감사드립니다.
현재 첨부드린 그림에 있는 검은 직선들이
R, P, Q 순서의 조건을 고려하지 않은 상태에서,
두 구에 동시에 접하며,
OPQ가 O'을 포함하지 않게끔 하는
가능한 모든 직선 PQ의 경우입니다.
17번 합성함수 미분법 or 치환적분법 없이 논리적 설명 가능한가요?
단순히 점대칭임을 이용하는건 설명이 부족한가요..?
다항함수 f(x)라고 조건을 주었다면 적당한 그래프 그려 설명하거나 직접 수식 세워 설명할 수 있는데, 기함수라는 조건만 주었기 때문에... 치환적분이나 합성함수 미분이 들어와야 논리적으로 풀이를 작성할 수 있다는 것이 제 생각입니다.
다항함수 조건이 없는건 고려하지 못했네요;;
답변 감사합니다
실제로 우함수/기함수 적분 성질 증명을 미적분에서 치환적분을 학습한 후에 할 수 있기 때문에 문제가 될 부분이지 않나 싶습니다.
교과서 내의 적분 공식들은 함수가 연속인 경우에만 적용할 수 있다고 하므로, 다항함수 조건을 주는 게 맞는 것 같습니다.
썸모 관계자 입니다.
지적하신 바와 같이 다항함수로 고치는 게 맞다고 생각합니다.
관심 가져주시고 지적해주셔서 감사합니다.
안녕하세요
위에 문제에 이의 제기한 사람입니다
답변주신 윗분도 관계자분이실 수 있는데,
확실하게 관계자임을 언급하셔서 댓을 달아봅니다
위 댓글에서 질문드린 내용이 맞는지 확인을 간곡히 부탁드립니다
안녕하세요, 썸모 관계자입니다. 해당 문항(기하 30번)의 오류를 확인하였고, 현재 어떻게 수정하여야 오류가 없을지 논의 중에 있습니다.
답변이 늦어진 점 대단히 죄송합니다.
무료 배포임에도 불구하고 열과 성을 다해 작업해주셔 감사할 따름입니다
내부에서 미처 발견하지 못한 오류를 찾아 주심에 제가 더욱 감사드립니다.
수고하셨습니다!!
공통 20번 해설 마지막 부분에서
f=4x^2-78x+81 이 아니라
f=4x^2+78x+81 아닌가요..?
+ 부호가 맞는데, 해설지 타이핑 과정에서 실수가 있었던 것으로 확인됩니다. 오탈자를 제보해 주심에 대단히 감사드립니다.