[정병훈T] 6평으로에피단다님의 21번 자작문제 해설
2017년 4월 30일 6평으로에피단다 21번 자작문항 해설.pdf
안녕하세요. 오랜만입니다.정병훈선생입니다.현재 강남대성학원에서 수학을 강의하고 있고,올해에는 슈퍼파워N제시리즈 저자가 되었습니다. 여기 오르비 게시판에서 좋은 문제를 발견하였는데,제가 생각한 풀이방법을 언급하는 분들은 거의 없던 것 같아서,해설지를 한 번 만들어 봤습니다.6평으로에피단다님의 21번 자작문제 원본참고로 원본에서 f(x)의 정의구간을 x0인 범위로 제공하고, 이 범위에서 미분가능한 함수라고 제공하지 않으면, 조건 (나)에서 x0인 범위에서의 교점의 개수를 보장할 수 없어서, 이 부분만 문제를 약간 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과탐 가산점 0
1.과탐 가산점 영향 큰가요? 2.과탐1사탐1할건데 한과목만 해도 적용되나요?
-
현우진 커리질문 0
시발점 끝났는데 뉴런이랑 수분감 들가기전에 개념복습하고싶은데 쎈 풀까 아님 걍 바로...
-
어디라인일까요 탐구하나는 버렸어요
-
과탐필수 3합5 0
2과목 미절삭인데 최저 충족율 얼마나 될까?
-
룰러 안 들어가서 다행이네 와 ㅋㅋ 존나 쎄질 뻔했노
-
문과 교차지원이 유리할까요..?
-
사랑한다!제하하하하하하!
-
날씨 추워요 ㅠ
-
국어는 95점따리라 못할거고 사문 백분위99인데 과외 ㄱㄴ?
-
아잠와 8
코낸
-
뮤비랑 음악이 너무 좋음 ㅠㅠ 하얀 내 맘에 너를 담았더니 빨간색이 돼 멈출 수...
-
괜히 기부니가 죠아져요...
-
내가 하고싶은건 5인 팀게임이었구나... 애들 다 대학생이라 백수는 서럽다 ㅠㅠ
-
확통77이면 0
아무리 컷 올라가도 3 가능하겠지요?
-
ㅈ돼서 우는 친구들 보면 맘이 좀 그럼
-
인서울(중경시 이상) 공대 기준 과탐 가산점 어느정도인가요? 0
사탐1컷이랑 과탐 백분위 몇이랑 비슷한가요?
-
확통이 쉬워서?
-
제자의 운명이 달려있나이다
-
영어 듣기만 좀 제대로 들을걸 잘볼줄 모르고 괜히 지랄하다가..
-
쎈발점 질문 0
워크북은 당연히 합니다 쎈 종류가 많아서 이리 질문 올립니다 감사합니다
-
24 55365 25 14322 이제 그만할래 무휴학반수 감안하면..
-
안녕하세요 올해 수능 본 재수생입니다 작년 수능 성적은 이렇게 나왔고 올해 수능...
-
살아있어... 17
앞으로도 잘 부탁한다 옯붕이들아
-
고전운문 고전산문 현대운문 현대산문 4권 일괄 3만원에 판매합니다!!! 정가보다...
-
ㅅㅂ 열심히하겠다고 그만 괴롭혀.......
-
전 이번 수능 확통 다 맞고 백분위 92를 받았는데요 제가 공통을 못 하는것도...
-
38끼지 2이게 해주세요
-
지1 6 --> 1컷비비는중
-
인생 개부럽다...
-
가톨릭의대 논술합격했습니다. 연락 주세요.
-
국어는 진짜 잘 가르칠 자신있는데.. 다른 게 너무 딸려서.. 한 과목 원툴이어도...
-
역시 기하안하길 잘했어
-
라인좀요 0
서성한 낮은과라도 안될까요
-
진학사에서는 8~9칸 나오긴 하는데 아직 실채점이 안나와서 불안하네요ㅜㅜ 안정으로...
-
전혀 안갔는데 생각해보니 실모가 게임보다 짜릿하고 유익한거아닌가???
-
고민끝에 2개로 줄였습니다 투표결과 참고하겠습니다 솔직히 마음가는건 동사쪽으로 진짜...
-
학교 홍보단인지 뭔지 논술 통제 도와주시는 분들 ㅎㅎㅎ
-
부자면 좋겠다 10
에휴이
-
대성 조금 전에 등급컷 업뎃됐던데 왜 과탐 등급컷은 안떨어질까요... 지1 42,...
-
삼반수 고민 0
연대 공대 1학년 재학중 1년 동안 수능공부 안함 공대가 적성에 잘 안맞음 반수를...
-
생명할걸 그랬나 0
물리 진짜 표본 에바임 ㅋㅋㅋㅋㅋ
-
자살이든, 병사든.... 전 지금 아는 것만으로는 초등 동창 교통사고로 사망,...
-
중학교 동창 부고소식을 방금 들었는데요...(3년전 사망) 2
중1때 좀 친했고 23학년때는 다른반 되서 자연스럽게 멀어졌고 고등학교는 다른...
-
수리 논술 0
지금 한양대, 중앙대 남았는데 해야할거 추천해주세요 1. 우주설 파이널 듣고 복습...
-
수능도 끝났고 현체내서 실기준비하거나 놀러갈 사람들을 위해서 알려주려고 함 현체는...
-
유학 경험은 없는데 영어 선행학습빨로 영어 공부 안하고 23 24 25 수능...
-
과탐으로 솔직히 대학 못 가겠어요ㅠㅠ 미적도 개ㅄ이고 과탐도 개ㅄ이고 제가 원래...
-
시험장 들어가기 전에는 소리빌런 걱정하면서 들어갔는데 스카보다 고요한듯 조용해서...
-
고속 컷 0
적정점수에서 한 3~4점 올리면 되겠지 한 7~8점 차이나던데 지금
-
키182
와 미친.. 지렸다
선생님 질문이 있습니다
보통 변곡접선으로 풀리는 문제에 대해서는
전부다 기하적과 수식적으로 둘 다 관찰이 가능한가요?
아니면 한쪽으로만 나오게끔 하는 경우도 존재하려나요?
보통은 양쪽다 열어놓는 것이 기출의 선례인데 이 부분에 대해서 의견이 궁금합니다
수식으로는 모두 가능합니다. 기하적으로 보통 변곡점 접선을 언급하는 방법은 두 함수 중에 어느 하나의 함수가 1차함수 정도로만 예쁘게 출제해야 가능합니다.
다만, 효율성의 측면에서는 문제에 따라 판단이 다르므로, 어느 풀이가 더 좋다고 쉽게 단정할 수는 없습니다.
이번 같은 경우에는 도함수 자체가 쉽게 도출이 되었는데
예를들어 f=mx+n과 한점에서 만나도록 하는 m의 값을 구하라고 했을때 이 경우에는
도함수자체의 살근에 따라서 달라지니까 만나는 것을 기준으로 분할하여 사고하면 될까요?
{f(x)-n}/x=m으로 놓고, g(x)={f(x)-n}/x으로 고쳐서 푸는 게 쉬울 겁니다.
오히려 이 문제의 경우 해설 기준으로 모든 k에 대한 문제라서 k가 우변에 단독으로 있는 것이 모양이 좋으니 저런 식으로 해결하지 않은 것입니다.
아 제 질문은
선생님이 위에 잡으신 함수꼴로하고 미분을하게 되어 나오는 식을 통해서 원함수를 추론하고 그에따라 그래프를 그린이후에 교점의 갯수를 찾는것인데
이 경우에 도함수가 n에 의해서 확정이 안되기에 찢어서 일반적으로 사고해야하나요?
이 경우는 그렇게 하지 않아도 쉽게 도함수값을 도출가능하기에 저런식으로 원시함수 자체를 적분한것으로 이해하면 되련지요!
또 일반적으로 m,n이 실수 전체의 가뵤을 가지는 것이 일반적인데 어느때는 나눠서 잡고 어느때는 위에 해설한 방향으로 잡아야하는지 궁금합니다!!
아 저는 n값이 고정되어 있을 때를 m의 값의 범위를 구하는 문제를 질문한 건 줄 알았습니다.^^
둘다 변할경우에는 어떤식으로 식을 정리하는것이 좋을까요
둘다 변하는 문제는 나중에 언급되는 알파벳을 우변에 단독으로 두는 것이 좋습니다.
아 x로 나누게 되면 분할해서 따져야하는 것들이 더 많게되어서 그렇게 식을 조작한다고 생각하면 될까요?
정말 감사합니다 ㅠㅠ
x로 나누느냐 아니냐는 중요하지 않습니다. 먼저 언급된 문자가 먼저 결정되는 법이니까요. 예를 들어 m이 먼저 결정된 후에 n을 언급하는 경우에는 우변에 n이 있어야 m에 따르는 풀이를 할 수 있습니다.
여기 해설도 m이 k보다 먼저 결정되니, 우변에 k가 있는 것이 쉬운 것입니다.
아 조건 나에서 주어진 것이 m에 대한 식이 주어졌으니 k꼴만 남기고 다 옆으로 밀어버리는게 맞는것이라고 이해했는데 맞게이해한건가요?
맞습니다.^^
나 조건은 다시보니 16학년도 6평 21번과도 일맥상통하네요.. 저도 정말 많이 배워갑니다 감사합니다
바로 그 점 때문에 이 문제가 좋은 문제라고 생각했던 것입니다. 좋은 문제를 보여주셔서 감사합니다.^^
어 저도 처음엔 그래프로풀고 두번째는 수식으로했는데ㅎ 배워갑니다
읽어주셔서 감사합니다.^^
저는 (가)조건해석을 적분식을 F(x2)-F(x1)으로 바꿔준 뒤 x2-x1으로 나누어준 후 극한을통해 f(x)>=0이라고 해석해주면 (가)조건을 모든상황에서 만족시키는 결과라 생각해서 그렇게 풀었는데 옳은걸까요??! 뭔가 논리적비약이 있는것같아서..
올바른 풀이입니다. 비약은 없습니다.^^
보통 그렇게 미분계수의 정의로 풀면 역 증명을 평균값의 정리로 해줘야 필요충분조건이 되는데, 이 문제에서는 역 증명이 평균값 정리를 써야 할 정도로 어려운 게 아니라서 괜찮습니다.
사실은 가조건의 제 의도는 미분계수를 이용하는 그 풀이입니다
물론 증가함수임를 이용하거나 적분의 넓이에 의한 직관도 현실적인 좋은 대안이겠지요
사실 난이도를 소폭 하향하고자 우변을 x2-x1이라고 안둔거랍니다
난이도 하향의 마음은 제가 잘 이해하고 있습니다. 강대에서 현재 제가 들어가는 반 학생들은 알 겁니다. 최근에 이런 유형의 (제가 만든) 문제를 이미 강의했는데, 저 역시 인테그럴의 옆에 x2-x1은 없었거든요. 그리고 적분으로 내놓으면, 넓이에 의한 직관으로 생각하는 학생들이 있다는 것도 알고 있어서, 일부러 그쪽을 가능하게 만들기도 하는 것이지요.^^