y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
저번주의 칼럼은 바로 이거였어요!
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
정답갑니당.
A : y=0 말고 y=1/2x도 접선, y=-1/2x도 접선…. 그러면 접선이 매우 많아지죠.
원점을 지나고 기울기가 -1에서 1 사이인 직선 모두가 접선이 됩니다.
모두가 원점을 스치면서 지나가니까요
접선의 정확한 정의는 미분계수를 기울기로 갖는 직선입니다.
미분계수는 그래프 위 두 점 사이의 기울기의 극한이며, 접선의 정확한 정의는 할선의 극한입니다.
할선의 극한이라는 말이 애매하지만, 극한의 정의로 미루어보면 극한값이 존재하려면, 좌극한과 우극한이 같은 값으로 수렴해야 합니다.
직선으로 확장시켜보면, 좌측에서 가까워져 가는 할선과 우측에서 가까워지는 할선의 극한 모두 한 직선으로 일치해야 합니다.
이렇게요!
좌극한과 우극한이 다르면 극한의 정의에 의해 어떤 것에 가까워진다고 단정짓기 애매하니까요! 그 사이 어떤 값을 택해야할지 애매한 것입니다.
우리는 한점에서 직선을 그을 수 없습니다. 하지만 접선은 그을 수 있게 된 이유는 극한을 통해 그 직선을 정확하게 하나로 결정할 수 있었기 때문입니다. 결정할 수 없다면? 당연히 한점에서 직선을 그을 수 없으니, 접선이 정해지지 않겠죠! 보통 뾰족점에서 접선이 무한히 많이 생깁니다. 이것을 첨점이라 하며, 그 점에서 함수는 미분 불가능합니다.
x값에 그 값에서의 미분계수가 y값이 되어 대응되는 함수를 도함수라 합니다.
도함수도 함수입니다! 즉 x값 하나에 y값 하나가 대응되어야하며, 도함수가 존재하려면 원함수가 정의되는 곳에서 모두 미분 가능해야 합니다.
접선이 많으면, 대응되는 접선의 기울기가 1개 이상이기 때문입니다.
Q : 그렇다면 왜 y=|f(x)|에 미분 불가능한 점이 생길 가능성이 있을까요?
절댓값의 정의는 수직선 위의 원점에서 어떤 점까지의 거리입니다. 항상 양수에요.
절댓값 기호 안의 값이 음수일 때는 마이너스가 붙어서 양수가 됩니다.
절댓값 기호 안의 값이 양수일 때는 f(x), 절댓값 기호 안의 값이 음수일때는 –f(x).
즉, 함숫값의 부호가 바뀔 때 함수또한 바뀐다는 것입니다!
서로 다른 함수 y=f(x)와 y=–f(x)가 이어져 있습니다. f(x)가 모든 실수에서 미분가능한 함수라 하더라도 y=f(x)와는 다른 함수 y=-f(x) 두개가 이어져있을때 미분 가능한지는 알 수 없습니다.
즉 함수가 바뀌는 부분에서 미분가능한지를 조사해야합니다.
함수가 바뀌는 부분이 어디인지에 주목하면 미분가능성 문제를 수월하게 풀 수 있습니다.
1. f(x)와 에 절댓값이 붙어있다. 이 절댓값 함수는 어디에서 바뀔까?
2. f(x)는 x=-1에서 함수가 바뀐다. 그러면 이것을 기준으로 나눠주면 될거야.
3. 는 어디에서 함수가 바뀔까?
……………….
이런 식으로 문제풀이가 진행됩니다.
1. g(x)가 절댓값이 두개 붙어있다. g(x)는 x에 따라 함수식이 바뀔거야.
2. 바깥의 절댓값을 생각하기엔 안의 절댓값 때문에 정확하게 알 수가 없다.
3. 일단 맨 안쪽의 절댓값부터 생각해보자. X=0 좌우에서 함수가 바뀔거야.
4. X=0 주변에서는 함숫값이 1 근처일거야. 그 주변에서는 항상 양수일거야.
5. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
6. X가 0이상에서는 함수가 언제 바뀔까?
7. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
사실 문제를 풀 때, 계산을 전혀 할 수 없어서 문제를 못푸는 경우보다는
문제를 풀기위한 아이디어가 부족해서 못푸는 경우가 많습니다.
그러므로 그 아이디어를 계속 고민해야하며, 그 근거는 개념에 있습니다.
사실 많은 분들이 예견해주신듯 합니다..ㅋㅋㅋ
요약하자면, 극한값은 좌극한과 우극한이 일치해야 존재합니다.
일치하지 않으면, 그 사이의 어떤 값으로 가까워지는가를 설명하기 힘들기 때문입니다.
그러면 다음주제를 소개해볼게요
유리화는 왜 하는걸까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강제얼버기 1
에반데 이따낮잠자야겠다
-
지금 진학사에는 3칸 불합뜨는디 안되려나요.... 하... 영어가 빵꾸가 나버려서...
-
수학 단과 다닌곳에서 9평 응원문자 정병호쌤꺼 인스스에 올린거 베낀거 너무 짜쳐요...
-
이원준 강민철 김동욱 강윤구 션T 강민웅 이훈식 박선 이 중 들으려고 고민중인 분들 질문 주세요
-
가천대 지방교대 0
대학 추천 부탁드립니다 +가천대 가고싶긴함요..
-
실시간 3
아무도 없는 강남대로
-
고아름쌤 아름다운기출n제 동아시아사 구해요! 글내리기 전까진 못구한거니 많이 찔러주세요!
-
연고대 비인기과 비벼볼라면 평백 몇이상 나와야 해요? 1
연고대 철학과 사학과 이런곳 비벼볼라면 평백 최소한 몇이상 나와야함둥?
-
화작, 미적, 영어, 물리, 생명 한국사 89 78 3 77 63 3 생명 망해서 안될까요
-
아무 이유가 없는거죠 사람이 뭘 하기 위해 태어난게 아니라 태어났기 때문에 뭘...
-
반수 고민 6
반수한다면 성공할 수 있을까요 지금 성적으로는 어디까지 될까요
-
20수능부터 봤는데 점점 퇴화한다... 서성한 라인 공대다니면서 수능본 입장에서...
-
아침에일어나야함
-
어떻게 89가 1이 안뜰수 있지? 근데 칸타타님 글 보니 보수적으로 생각하면...
-
이제 어떻게 살아야할까 난 뭐해먹고 살까 나이는 찼는데 이룬건없고 결국 원하는건 못...
-
미적이 쉽긴 했어도 14, 22가 작수 킬러급이라 생각하는데 만표가 올수랑 비비네
-
낭만없는 정시러는 아무리 성적을 잘받아도 낭만이 없음뇨
-
미적 다 맞았고 공통 1개 틀려서 96인데 공통 다 맞고 미적1틀한 96점이랑...
-
화1 만백 98이상 기원 2일차
-
현역(23) 땐 교육청 두 번 제외 수학 전부 만점이었었는데 올핸 6, 9, 11...
-
반수 도전이 고민됩니다 16
내신따기 쉬운 일반고에서 고2까지 쭉 놀았어요.(수업시간 빼고 공부 안함) 내신...
-
화작 확통 영어 사문 정법 77 70 4 41 39 충남, 충북 갈 수 있을까요??
-
고2 물리1 생기부 주제탐구로 엔트로피 관련된 내용 해도 될까요? 1
물리1 주제 탐구 수행에서 교과서에 엔트로피의 개념이 자세하지 않아 이에 엔트로피의...
-
예비 고3이라 이제 26수능 국어 인강들으려 하는데 문학은 김상훈 쌤의 문학론이...
-
작수 국어 1등급이였는데… 킥킥
-
우리 이대남들 진짜 사랑함니뇨
-
제얘기임뇨 호애애애앵
-
최근에 본 영화 1
예전에 봣던거 또보기 인셉션 다크나이트 트릴로지 새로본거 살인마 잭의 집 위플래시...
-
일단 논술은 홍대 경희대 보고 기도중입니다
-
뭐로 입문하면 될까요 형님들
-
자야겟음뇨 2
빠빠이
-
고 1 국어 모의고사 문법 문제 어떻게 공부해야하나요 0
예비고1인데 국어 모의고사에 문법 문제가 나오는거 같던데 어떻게 공부해야하나요...
-
미안하고 고마웠다 10
맨날 발바닥 타령해서 미안했고.... 나같은 찐이랑 친하게 지내줘서 고마웠다....
-
사회계열 가고싶은데 가능할까요? 어디까지 가능할지 봐주시면 감사드리겠습니다…. 글이...
-
궁금합니다
-
호머식 해주면 안 되나 ㄹㅇ로 내 만점 돌려달라고
-
대성 션티 쌤 수업 듣고 싶은데 그냥 패스로 사는게 니을까요..? 수학...
Lim (a-b)와 같은 형태에서 a,b 둘다 발산하는 형태이면 극한의 연산과 관련된 형태를 사용할 수 없기 때문에 유리화를 통해 극한의 연산 법칙을 적용 가능한 형태로 바꿔주는것 아닌가요...? 그나저나 일반청의미님 글이 모아보기에서 계속 안보여욤 ㅠㅠ
그래도 lim c/d 에서 c, d 둘다 발산하는 형태일걸요!
사실 lim (x-1)/(x-2)같은거에서 최고차항 지수/계수비교하는게 일상화되어서 놓칠수 있는 부분이지만 x값이 임의의 상수값이 아닌 무한대로 발산했을때의 극한의 경우 lim1/x=0과 같은 몇개의 공리를 적용할 수 있는 형태로 변형한다 (ex.x-1/x-2를 (1-(1/x))/(1-2/x))와 같은 형태로 )뭐 그렇게 배웠던 기억이 나서욤! 유리화도 비슷한 맥락으로 이해했던것같은...
넹 더 자세하게 설명해주면 되십니당.
또한 분모의 유리화는 왜 하는지도 생각해주시면 좋아요.
유익한정보 고맙습니다~~ 이런글은 닥팔이야! ^,^